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Introduction

We want to be able to predict the structure of nuclei and nuclear and
neutron matter.

I will talk only about ground states.

Here the Hamiltonian will be for nonrelativistic protons and neutrons
interacting with a potential (mostly local).

Monte Carlo calculations must choose a basis and sample the nonlocal
parts of the propagator.
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Hamiltonian

The Hamiltonian is

H =
∑

i

p2
i

2mi
+

∑
i<j

M∑
p=1

vp(rij)O(p)(i, j) + V3

• i and j label the two nucleons

• rij is the distance separating the two nucleons

• O(p) include central, spin, isospin, and spin orbit operators, and M is
the maximum number of operators ( i.e. 18 in Argonne v18 model).

For our calculations we use:

For purely neutron systems the Argonne v′8 and either Urbana or Illinois
three-body potentials or density dependence.
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For nuclei and nuclear matter, we have used the Argonne v′6 potential.
Three-body effects with density dependence. Spin-orbit is still a problem,
but we recent progress indicates it can now be included.

The operator terms in Argonne v′8 are∑
p

v(rij)O
(p)
ij = vc(rij) + vτ(rij)~τi · ~τj

+vσ(rij)~σi · ~σj + vστ(rij)~σi · ~σj~τi · ~τj
+vt(rij)tij + vtτ(rij)tij~τi · ~τj
+vLS(rij)~Lij · (~Si + ~Sj)

+vLSτ(rij)~Lij · (~Si + ~Sj)~τi · ~τj
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Diffusion Monte Carlo Projection

Project to lowest state not orthogonal to the starting function
|ψ(0)〉 =

∑
n an|Ψn〉

|ψ(t)〉 = e−(H−ET )t|ψ(0)〉

= e−(E0−ET )t

[
a0|Ψ0〉 +

∑
n>0

e−(En−E0)t|Ψn〉

]

Choose ET to keep normalization approximately constant.
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Choosing the sampled basis

We need a complete or overcomplete basis – Walkers. We choose |RS〉,
where R represents the positions of the particles, and S are the spin states.

GFMC – S is a linear combination of all spin isospin states ∼ A!
Z!(A−Z)!2

A

complex coefficients.

AFDMC – S is an outer product of spinors p ↑, p ↓, n ↑, n ↓, ∼ 4A
complex coefficients

Arizona State University



We write the initial state as a linear combination of sampled walkers.

We must be able to write the propagator as

e−(H−ET )∆t =
∫
dX P (X)︸ ︷︷ ︸

Probability density

T (X)︸ ︷︷ ︸
basis change operator

T (X)|RS〉 = W (X,R, S)︸ ︷︷ ︸
weight

|R′S′〉︸ ︷︷ ︸
new walker

The set of X play the role of auxiliary fields.
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Auxiliary fields with the Hubbard-Stratonovich
Transformation

For the GFMC basis, the T (X) can be a product of the space translation

operator e−
i
h̄P ·A and any spin operators multiplied by spatial functions.

The v′8 Hamiltonian is a quadratic form in these operators.

For AFDMC, T (X) can be a product of the space translation operator

e−
i
h̄P ·A and products of single particle spin operators multiplied by spatial

functions.

The v′6 Hamiltonian is a quadratic form in these operators. (For neutrons
the v′8 Hamiltonian + three-body interaction too)

Hubbard-Stratonovich transformation linearizes quadratic forms.

e
O2

2 =
1√
2π

∫ ∞

−∞
dxe−

x2

2 exO
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For example

e−
p2

2m∆t =
1√
2π

∫ ∞

−∞
dxe−

x2

2 e−
i
h̄px

q
h̄2∆t

m

is diffusion Monte Carlo.
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Spin Sampling with an Auxiliary Field

We diagonalize the interaction in spinor space to get operator squares.

This requires Order(A3) operations – same complexity as determinant.

For A particles, the v6 interaction can be written as

V =
∑
i<j

[
6∑

p=1

vp(rij)O(p)(i, j)] = Vc + Vnc

= Vc +
1
2

∑
i,α,j,β

σi,αA
(σ)
i,α,j,βσj,β

+
1
2

∑
i,α,j,β

σi,αA
(στ)
i,α,j,βσj,β~τi · ~τj

+
1
2

∑
i,j

A
(τ)
i,j ~τi · ~τj
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• Our A matrices are zero when i = j and symmetric.

• All the A matrices are real and symmetric and have real eigenvalues and
eigenvectors.

• The eigenvectors and eigenvalues are defined by∑
j,β

A
(σ)
i,α,j,β

~ψσ
n(j) · x̂β = λ(σ)

n
~ψσ

n(i) · x̂α

The matrices can be written in terms of their eigenvectors and eigenvalues
to give the noncentral potential

Vnc =
1
2

∑
i,j,n

~σi · ~ψ(σ)
n (i)λ(σ)

n
~ψ(σ)

n (j) · ~σj

+
1
2

∑
i,j,n

~σi · ~ψ(στ)
n (i)λ(στ)

n
~ψ(στ)

n (j) · ~σj~τi · ~τj

+
1
2

∑
i,j,n

~τi · ~τjψ(τ)
n (i)λ(τ)

n ψ(τ)
n (j)
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We want the squares of operators so we write

Vnc =
1
2

3A∑
n=1

(O(σ)
n )2λ(σ)

n

+
1
2

3∑
α=1

3A∑
n=1

(O(στ)
nα )2λ(στ)

n

+
1
2

3∑
α=1

A∑
n=1

(O(τ)
nα)2λ(τ)

n

with

O(σ)
n =

∑
i

~σi · ~ψ(τ)
n (i)

O(στ)
nα =

∑
i

τiα~σi · ~ψ(στ)
n (i)

O(τ)
nα =

∑
i

τiαψ
(τ)
n (i)
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• The Hubbard-Stratonovich transformation is

e−
1
2λnO2

n∆t =
1√
2π

∫ ∞

−∞
dxe−

1
2x2+x

√
−λn∆tOn

• Our On don’t commute, so we need to keep the time steps small so
that the commutator terms can be ignored. Each of the On is a sum of
1-body operators as required above.

• We require 3A Hubbard-Stratonovich variables for the σ terms, 9A
variables for the στ terms, and 3A variables for the τ terms. Each time
step requires the diagonalization of two 3A by 3A matrices and one A
by A matrix.

• Many other breakups are possible.
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Importance sampling and path Constraint

In order to minimize the variance of the computed expectation values,
include importance sampling.

Walker positions and spins are sampled from a new state

|ΨIΨ(t)〉 =
Nw∑
i=1

wi|RiSi〉

where

〈RS|ΨIΨ(t)〉 = 〈ΨI|RS〉〈RS|Ψ(t)〉
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Propagation becomes

|ΨIΨ(t+ ∆t)〉 =
Nw∑
i=1

wi

∫
dXP (X)

〈ΨI|R′
iS

′
i〉

〈ΨI|RiSi〉
T (X)|RiSi〉

=
Nw∑
i=1

wi

∫
dX P (X)

〈ΨI|T (X)|RiSi〉
〈ΨI|RiSi〉︸ ︷︷ ︸

Drifted Gaussian −Local energy weight

·

· T (X)
W (X,Ri, Si)

|RiSi〉︸ ︷︷ ︸
Normalized walker

(1)

Local energy

EL(R,S) =
〈ΨI|H|RS〉
〈ΨI|Rs〉

Weight becomes e−(EL(R,S)−ET )∆t - Low variance
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• We still have the usual fermi sign problem, in this case the overlap of
our walkers with the trial function will be complex.

• We constrain the path so that the walker has the same phase as the
trial function, and deform the path of the auxiliary field integration so
that the auxiliary variables are complex†.

• For spin independent potentials this reduces to the fixed-node or fixed
phase approximation.

• There is a variational principle for the mixed energy but not an upper
bound principle. Expectation values of H have an upper bound principle
but are not implemented here.

† S. Zhang and H. Krakauer, Quantum Monte Carlo method using phase-free random walks with Slater
determinants, Phys. Rev. Lett. 90, 136401 (2003).
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Results for neutron systems

• Neutron Matter Equation of State†

• Neutron Matter Spin Susceptibility‡.

• Model Neutron Drops (Unambiguous comparison to GFMC)§.

• Even odd energy gaps using Pfaffian trial functions for 1S0 BCS pairing
in low density neutron matter¶.

† S. Gandolfi, A. Yu. Illarionov, K.E. Schmidt, F. Pederiva, and S. Fantoni, “Quantum Monte Carlo
calculation of the equation of state of neuton matter” Phys. Rev. C 79, 054005 (2009).

‡ S. Fantoni, A. Sarsa, K.E. Schmidt, Spin Susceptibility of Neutron Matter at Zero Temperature, Phys.
Rev. Lett. 87, 181101 (2001).

§ F. Pederiva, A. Sarsa, K. E. Schmidt and S. Fantoni, Auxiliary field diffusion Monte Carlo calculation
of ground state properties of neutron drops, Nucl. Phys. A 742, 255 (2004).

¶A. Fabrocini, S. Fantoni, A. Yu Illarionov, and K.E. Schmidt, 1S0 superfluid phase transition in neutron
matter with realistic nuclear potentials and modern many-body theories, Phys. Rev. Lett. 95, 192501
(2005); and S. Gandolfi, F. Pederiva, A. Illarionov, S. Fantoni, and K.E. Schmidt, in press (2008).
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Results for neutron and proton systems

• Symmetric nuclear matter.†

• Selected nuclei.‡

• Asymmetric matter

†S. Gandolfi, F. Pederiva, S. Fantoni, and K. E. Schmidt Quantum Monte Carlo Calculations of
Symmetric Nuclear Matter Phys. Rev. Lett. 98, 102503 (2007).

‡ S. Gandolfi, F. Pederiva, S. Fantoni, and K. E. Schmidt, Auxiliary Field Diffusion Monte Carlo
Calculation of Nuclei with A ≤ 40 with Tensor Interactions, Phys. Rev. Lett. 99, 022507 (2007).
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GFMC Model neutron drop comparison

Table 1: Ground state AFDMC energies of 8n(0+), 7n(1
2

+) and 7n(3
2

+)
droplets for V0 = 20MeV and the AU8’ and AU6’ interactions. The cluster
variational Monte Carlo (CVMC) and GFMC results†for the AU8’ and the
full AU18 (Argonne v18 plus Urbana IX) are also reported for comparison.
The last column reports the spin–orbit splittings (SOS) in MeV of 7n, given

by the energy difference between the 7n(3
2

+) and 7n(1
2

+) states.
8n(0+) 7n(1

2

+) 7n(3
2

+) SOS

GFMC(AU18) -37.8(1) -33.2(1) -31.7(1) 1.5(2)
CVMC(AU18) -35.5(1) -31.2(1) -29.7(1) 1.5(2)
GFMC(AU8’) -38.3(1) -34.0(1) -32.4(1) 1.6(2)
AFDMC(AU8’) -37.55(2) -33.06(3) -31.51(2) 1.55(5)

† S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson, Realistic models of pion-exchange
three-nucleon interactions, Phys. Rev. C 64, 14001 (2001).
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Neutron matter equation of state
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Akmal refers to the FHNC calculation†

† A. Akmal, V.R. Pandharipande, and D.G. Ravenhall, Equation of state of nucleon matter and neutron
star structure, Phys. Rev. C 58 1804 (1998).
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Low density neutron matter with Argonne v18
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FP is the calculation of Friedman and Pandharipande (not v18, but the low
energy channels are not very different).†

† B. Friedman and V.R. Pandharipande, Hot and cold, nuclear and neutron matter, Nucl. Phys. A
361, 502 (1981).

Arizona State University



Nuclear matter Energy, 28 particles, v′8 truncated to v6

0.5 1 1.5 2 2.5 3
ρ /ρ0

-16

-14
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-10

-8

E
 [M

eV
]

AFDMC fit
AFDMC
FHNC/SOC
FHNC/SOC + elem.
BHF

Dashed lines correspond to calculations performed with other methods†

(blue line with squares: FHNC/SOC; magenta with diamonds: BHF). Blue
triangles are FHNC/SOC results corrected with elementary diagrams.

† I. Bombaci, A. Fabrocini, A. Polls, I. Vidaña, Spin-orbit tensor interactions in homogeneous matter of
nucleons: accurancy of modern many-body theories, Phys. Lett. B, 609, 232 (2005).
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The AFDMC equation of state is fit to

E

A
=
E0

A
+ α(x− x̄)2 + β(x− x̄)3,

x = ρ/ρ0 ρ0 = 0.16 fm−3.

E0/A = -14.04(4) MeV
α = 3.09(6) MeV
β = -0.44(8) MeV
x̄ = 1.83(1)
The compressibility
K = 9x̄2

(
∂2 (E/A) /∂x2

)
x̄

at saturation density x̄ is ∼ 190 MeV.

Results with 76 and 108 particles are within 3 percent of those for 28
particles.
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Neutron and nuclear matter with three-nucleon
interaction from density dependence

(Friedman-Lagaris-Pandharipande form)

V3(ρ) = 3γ2ρ
2e−γ3ρ

[
1 − 2

3

(
ρn − ρp

ρn + ρp

)2
]

Adjust NN AV6’ to reproduce symmetric nuclear matter equilibrium,
ρ0 = 0.16 fm−3, E(ρ0) = −16 MeV, compressibility K ' 240MeV.
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Asymmetric matter

It’s easy to calculate with different numbers of neutrons and protons.

Removing size dependence is important.
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1.0, 66n
0.95, 38n 1p
0.9, 38n 2p
0.867, 14n 1p
0.78, 114n 14p
0.75, 14n 2p
0.65, 66n 14p
0.46, 38n 14p
0.0, 14n 14p

These are for Argonne v′6.
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He Isotopes

4He

AFDMC v′6 -27.13(10) MeV
Hyperspherical v′6 -26.93(1) MeV†

GFMC v′6 -26.93(1) MeV [ -26.23(1) -0.7 MeV Coulomb ]‡

Expt -28.296 MeV

8He

AFDMC v′6 -23.6(5) MeV (Unstable to breakup into 4He+2n)
GFMC v′6 -23.55(8) MeV [ -22.85(8) -0.7 MeV Coulomb ]
Expt -31.408 MeV

† G. Orlandini, private communication
‡ R.B. Wiringa and S.C. Pieper, Evolution of Nuclear Spectra with Nuclear Forces, Phys. Rev. Lett. 89,

182501 (2002).
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Oxygen

16O

AFDMC v′6 -100.7(4) MeV (Unstable to breakup to 4 4He)

Expt -127.619 MeV

AFDMC Urbana v14 truncated to 6 operators -90.8(1) MeV

Cluster Monte Carlo give for the 6 operator part of v14
(optimized for 14 operators), -83.2 MeV†

† S. C. Pieper, R. B. Wiringa, and V. R. Pandharipande, Variational Calculation of the Ground-State of
16O, Phys. Rev. C 46, 1741-1756 (1992).
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Calcium

40Ca AFDMC v′6 -272(2) MeV (Equal to 10 4He)

Expt -342.051 MeV
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Spin-Orbit isospin exchange – 3-body Commutator terms

These both require 3-body breakups for our choice of basis.

Spin-orbit isospin exchange interaction has terms like

p1σ1τ1τ2v(r)

We can break these up using 2 Hubbard-Stratonovich

transformations

e−
p2

2 ∆t−ipO1O2∆t

=
1
2π

∫
dx

∫
dye−

x2+y2

2 ·

·eipx∆t1/2−
√

xy(O1+O2)∆t1/4−x(O2
1+O2

2)∆t1/2/2−O2
1O2

2∆t/2
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With importance sampling like we use for the

Hubbard-Stratonovich transformation we get a modified

gaussian distribution and a local energy weight - Low variance.

Work in progress...
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Conclusions and Future

• The auxiliary field Diffusion Monte Carlo calculations can

give accurate results for nuclei, neutron and nuclear matter.

• They have polynomial scaling with system size

• The three-body and spin-orbit potentials need to be

included for the neutron-proton case. These three-operator

breakups are now possible with low variance.

• Physics of neutron rich nuclei can be studied...
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